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Abstract

The novel coronavirus (SARS-CoV-2) emerged in late 2019 and spread globally in early 2020. 

Initial reports suggested the associated disease, COVID-19, produced rapid epidemic growth and 

caused high mortality. As the virus sparked local epidemics in new communities, health systems 

and policy makers were forced to make decisions with limited information about the spread of 

the disease. We developed a compartmental model to project COVID-19 healthcare demands that 

combined information regarding SARS-CoV-2 transmission dynamics from international reports 

with local COVID-19 hospital census data to support response efforts in three Metropolitan 

Statistical Areas (MSAs) in Texas, USA: Austin-Round Rock, Houston-The Woodlands-Sugar 

Land, and Beaumont-Port Arthur. Our model projects that strict stay-home orders and other social 

distancing measures could suppress the spread of the pandemic. Our capacity to provide rapid 

decision-support in response to emerging threats depends on access to data, validated modeling 

approaches, careful uncertainty quantification, and adequate computational resources.
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THE NOVEL CORONAVIRUS

SARS-CoV-2 emerged from Wuhan, China in late 2019 and sparked the Coronavirus 

Disease 2019 (COVID-19) pandemic as it spread worldwide in the early months of 2020. 

Early estimates of rapid growth with 3-day doubling times and high mortality rates painted 

a grim picture. Preliminary projections suggested that, without interventions, the healthcare 

infrastructure would be overwhelmed and COVID-19 mortality might exceed 2 million 

deaths in the United States alone. Public health messaging initially focused on “flattening 

the curve” to reduce healthcare burdens and buy time to ramp up surveillance and develop 

effective response strategies.

Policymakers turned to mathematical models of disease transmission to help with 

interpreting data, projecting healthcare demands and assessing mitigation measures. Over 

the last two decades, modeling has become a core tool for pandemic planning and 

decision support during emerging threats including the 2009 H1N1 flu pandemic, the 

2015–2016 Ebola epidemic, and the 2015–2016 Zika virus pandemic [1]. Such models 

are designed to synthesize information on disease progression and transmission dynamics 

with local epidemiological data to provide situational awareness, project future spread, 

hospitalizations, and mortality, and evaluate possible interventions.

Here, we describe key challenges in modeling early COVID-19 spread and strategies for 

constructing data-driven models in the face of uncertainty to provide situational awareness 

and pandemic projections for three Metropolitan areas in Texas.

COVID-19 data and uncertainty

As the COVID-19 pandemic emerged in US cities, there was great uncertainty regarding 

the transmission and severity of the virus. Two categories of data are required for robust 

modeling: (1) disease transmission and severity data, including the impact of behaviors that 

reduce transmission, and (2) surveillance data.

Disease transmission and severity data.—Pathogen natural history data describe 

mode of transmission, transmission rates, length of incubation or latent periods, timing and 

duration of symptom onset, and fatality rates. These data are typically aggregated from 

published studies, which are scarce for new pathogens. Given the speed in which COVID-19 

was spreading, many groups chose to publish initial reports on medRxiv instead of waiting 

to disseminate following peer review.

Despite the quick response by the scientific community to share results and data, uncertainty 

in these key aspects of SARS-CoV-2 natural history remained. For example, early reports 

suggested individuals without symptoms were infectious. But it still remains unclear what 

fraction of infections are transmitted by these asymptomatic individuals. There is still debate 

on whether these cases would be more accurately described as subclinical, and how many 

asymptomatic cases are in fact pre-symptomatic and eventually progress to symptom onset 

[2], [3].
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These uncertainties are very important for modeling efforts. Many models are designed 

to capture uncertainties in these estimates when enough research is available to derive 

estimates of parameter distributions. This is not always possible, and in many cases 

knowledge from similar pathogens is used to fill in the gaps. Many modeling groups, 

including our own, borrowed from a rich history of influenza modeling to make reasonable 

assumptions about aspects of SARS-CoV-2 natural history that were not yet fully described 

in the literature.

Surveillance data.—Disease surveillance systems typically track suspected and 

laboratory confirmed infection case counts and deaths. As SARS-CoV-2 spread, local, 

state and federal agencies realized that hospitals may approach their patient capacities, and 

rapidly developed additional surveillance systems to track hospital census [4].

Laboratory confirmation for SARS-CoV-2 infection required the development of novel 

diagnostics. Early delays in the manufacturing and distribution of testing kits hampered 

efforts to track the early spread of the virus. As testing ramped up, the demand 

caused backlogs in testing laboratories and exacerbated reporting delays. While many of 

these hurdles have been addressed, testing data remain an unreliable indicator of local 

transmission given the considerable spatiotemporal variability in testing availability and 

priorities and the high proportion of asymptomatic and mildly symptomatic cases [5]–[7].

Mortality data paint a more complete but time-lagged picture of severe COVID-19 

prevalence. The average time to death from the date of hospitalization is 14 days [5]–

[7]. Hospital census data—total number of patients hospitalized for COVID-19 related 

complications on a daily or weekly basis—provides an earlier indication of pandemic 

spread, given the estimated 5.9 day lag between symptom onset and hospitalization [5]–[7]. 

We expect the majority of severe COVID-19 cases will seek hospitalization, and have thus 

prioritized hospitalization data when estimating transmission rates for our models.

Early COVID-19 models

There are many COVID-19 models that project cases, hospitalizations, and deaths, and 

they differ in their model structure, assumptions, and calibration. Early attempts to project 

the course of the pandemic relied on estimates from other respiratory viruses and from 

initial reports from China. For example, the widely cited projections of pandemic waves 

in the US and UK from Imperial College London used a previously developed individual-

based influenza model parameterized with data from the Wuhan, China COVID-19 

epidemic [3]. As US case and death count data became available, models including 

the high-profile dashboard produced by the Institute for Health Metrics and Evaluation 

(IHME) at the University of Washington calibrated projections based on local conditions 

[8]. Simultaneously, the pandemic research community developed a diverse portfolio of 

COVID-19 models that leveraged local, regional and national surveillance data as well 

as cell phone mobility data [9]. Many of these models now contribute to the national 

COVID-19 mortality forecasting ensemble, maintained by the Centers for Disease Control 

and Prevention [10].
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Three case studies in Texas, USA

Our research team responded to requests from policy makers in three Metropolitan 

Statistical Areas (MSAs) in Texas for data-informed projections of COVID-19 

hospitalizations that were more locally relevant than the national and state level models 

available in the early epidemic. To meet these requests, the UT COVID-19 Modeling 

Consortium quickly adapted existing models for influenza virus epidemics to project 

healthcare needs for Austin-Round Rock MSA [5], Houston-The Woodlands-Sugar Land 

MSA [6], and Beaumont-Port Arthur MSA [7]. We summarize the findings of those three 

reports, with a focus on how differences in available data in these MSAs drove changes to 

modeling infrastructure and approach.

METHODS

We used hospital census data (total count of in-hospital patients with confirmed COVID-19 

diagnosis per day) to derive model-based estimates of key parameters governing the viral 

transmission rate in our models.

Selection of Texas Metropolitan Statistical Areas

We selected Austin-Round Rock MSA, Houston-The Woodlands-Sugar Land MSA, and 

Beaumont-Port Arthur MSA based on availability of reliable COVID-19 hospital census 

data. Hereafter, we refer to these regions as Austin, Houston and Beaumont. Both Austin 

and Houston encompass large metropolitan areas with populations of 2.2 million and 7 

million people, respectively. Beaumont has a smaller population of approximately 410,000 

people. Austin has a lower estimated proportion of high-risk individuals than the other two 

MSAs [5]-[7].

Data sources

We acquired hospital census data from stakeholders to inform our parameter estimation and 

projections:

• Dell Medical School at the University of Texas at Austin collected 

comprehensive daily COVID-19 hospital census data from hospitals in Austin 

starting March 13, 2020.

• The Southeast Texas Regional Advisory Council (SETRAC) provided 

COVID-19 hospital census data for Houston and Beaumont. Daily data were 

updated on a weekly cadence, beginning April 2, 2020.

SARS-CoV-2 transmission model

We use a compartmental model based on SARS-CoV-2 transmission natural history to 

model transmission of the virus within each MSA, as described in detail in refs [5]–

[7] (Figure 1). The model tracks the changing number of individuals in distinct disease 

compartments. Newly infected individuals move from susceptible (S) to exposed (i.e., 

infected but not yet symptomatic or infectious) (E), followed by an infectious period 

that could be symptomatic (IY) or asymptomatic (IA). Asymptomatic individuals recover 

(R) without ever developing symptoms. Symptomatic individuals could either become 
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hospitalized (IH) or recovered (R). Hospitalized individuals then recover (R) or die (D). 

The population is divided into five age classes (0–4y, 5–17y, 18–49y, 50–65y, and +65y) 

and transmission is governed by age specific contact rates for home, school, work and other 

locations. The model assumes that there is no travel in or out of each MSA, given the 

COVID-19 stay-home orders at the time of analysis. The full list of parameters is provided 

in the Appendix and in our reports [5]–[7].

Deterministic model.—We used a deterministic implementation of our model for 

parameter estimation of the transmission rate, transmission rate reduction and start date. 

We also used the deterministic model to initialize simulations for the Houston and Beaumont 

reports as described in the following sections.

Stochastic model.—We used a stochastic implementation of our model to capture critical 

sources of uncertainty regarding the transmission dynamics and severity of the virus. 

Specifically, we draw random deviates from distributions rather than assuming fixed values 

for the following parameters: duration of the latent period, duration of the infectious period, 

relative infectiousness of asymptomatic cases, length of hospital stay for survivors, and 

length of hospital stay for non-survivors, as described in our reports [5]–[7]. We assume 

triangular distributions because they make minimal assumptions regarding the shape of the 

distributions while capturing a minimum, maximum, and mean value for the parameter.

In addition, the number of individuals transitioning from one compartment to the next at 

each time step is determined by a Poisson random variable to capture variability in the 

disease progression process.

Model calibration and uncertainty estimation

We assumed that the initial transmission rate of SARS-CoV-2 prior to the implementation 

of social distancing measures (ß0) was fixed and used hospital census data prior to any 

mandated interventions, if available, to estimate ß0. We further assume that shelter-in-place 

orders reduced the transmission rate by a fixed amount, and used hospital census data 

following implementation of mandated interventions to estimate this reduction (κ). These 

parameters were estimated using non-linear least squares [5]–[7]. Briefly, for both β0 and 

κ, we searched the interval [0, 1] for values that minimized mean squared error in the 

observed hospital census data and the number of people in the hospitalized compartment of 

our model.

Pre-Intervention data.—We were able to estimate the transmission rate prior to 

intervention (ß0) for Austin using hospital census data from March 13 to March 24, 2020. 

However, data from this early period were not available for Houston or Beaumont. Thus, we 

assumed that the baseline transmission rate would be the same for these MSAs as for Austin.

Post-Intervention data.—Stay-home orders were enacted on March 24, 2020 in Austin, 

March 27, 2020 in Houston and March 28, 2020 in Beaumont. For the Austin area, we 

fit our model to COVID-19 hospitalization data covering this entire range to estimate the 

reduction in transmission (κ). In Houston and Beaumont, we fit our model to COVID-19 

hospitalization data that were available beginning April 2.
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Uncertainty quantification.—To indirectly estimate confidence intervals for κ, we ran 

100 stochastic simulations for each possible value of κ between 0–100%, at 5% increments 

[5]–[7]. We then calculated the binomial probability that the 95% prediction interval for 

each simulation would contain the observed data. We report the 95% confidence interval for 

κ as the minimum and maximum values for which this binomial probability is greater than 

0.05.

Estimating the date of pandemic emergence

We estimated the date on which SARS-CoV-2 began spreading in the Austin area based on 

the date of the first reported COVID-19 hospital admission (March 13, 2020) and simple 

assumptions about the early transmission rate of the virus, prior to stay-home measures. 

Specifically, we assumed a three-day doubling time [5] and that approximately 4% of cases 

require hospitalization [5]–[7]. For the other two regions, we did not know the date of 

the first COVID-19 hospitalizations. Thus, we took an alternative approach in which we 

evaluated a range of possible start dates. For each date, we estimated κ using the non-linear 

least squares method mentioned above and selected the start date and κ combination that 

minimized the root mean squared error between the simulated and observed hospitalization 

counts.

Hospitalization projections

We performed stochastic simulations using the estimated pandemic emergence date, ß0, and 

κ values to project the daily hospital census in each MSA. All simulations started with a 

single infected individual on the estimated start date of the local epidemic for the MSA 

under consideration. Transmission rate reduction began the day interventions took effect in 

each MSA: March 24, 2020 for Austin, March 27, 2020 for Houston, and March 28, 2020 

for Beaumont.

Filtering plausible simulations

Some stochastic simulations failed to result in epidemics. That is, the initial clusters of cases 

died out before producing a large-scale epidemic. Given that epidemics actually occurred, 

we filtered out such runs. For Austin, we excluded all simulations that had no cases on 

the date the local stay home order was enacted (March 24, 2020). For the Houston and 

Beaumont MSAs, we started each simulation using a deterministic implementation of our 

model, in which all parameters were fixed to their median values, and then switched to a 

stochastic model when ten daily incident cases were achieved.

Computing resources

Parameter estimation (start date, transmission rate, transmission rate reduction) and 

stochastic simulations were conducted on the Frontera Supercomputer at the Texas 

Advanced Computing Center (TACC).

RESULTS

We estimated healthcare demands for Austin, Houston, and Beaumont in the early stages of 

the COVID19 pandemic. We shared reports of these results with local officials and posted 
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them online [5]–[7]. Here, we review our projections and the challenges we faced while 

racing to provide time-sensitive situational awareness.

Data availability and speed of analysis

We began our assessment of Austin on April 16th and delivered a completed report four 

days later (April 20), using COVID-19 hospitalization data from March 13th through April 

16th. The Houston and Beaumont analyses required additional methods development since 

data were only available after April 2, likely several weeks after the pandemic emerged in 

these two areas. To address the missing early data, we assumed that the early transmission 

rate in Houston and Beaumont was identical to that estimated for Austin. These two reports 

took 8–9 days to complete.

Estimation of epidemic emergence date and impact of stay-home orders

For Austin, we estimated initial transmission rate (β0) and impact of stay-home orders (κ) 

using nonlinear least squares fitting. For Houston and Beaumont, we estimated the date 

of epidemic emergence and κ using a combination of nonlinear least squares fitting and a 

search across possible start dates. We estimated that COVID-19 began spreading in Austin, 

Houston, and Beaumont on February 15, February 10, and February 27, 2020, respectively. 

Furthermore, the local stay-home orders reduced COVID-19 transmission rates by 94% 

(95% CI: 55–100%) in Austin, by 95% (95% CI: 80–100%) in Houston, and by 85% (95% 

CI: 70–100%) in Beaumont (Figure 2). We used stochastic simulations to indirectly derive 

confidence intervals for κ, and applied two methods to restrict simulations to only those in 

which the epidemic eventually grew exponentially. In Austin, we filtered out all simulated 

outbreaks that died out after a few cases; in the other areas, we initialized our simulations 

using a deterministic model that did not allow for stochastic fade out. The first method 

produced larger confidence intervals than the second method (Figure 2).

COVID-19 hospitalization projections

In our initial reports, we projected COVID-19 hospitalizations, ICU patients and ventilator 

demand through mid-August, 2020 [5]–[7]. The projections are initialized on the estimated 

emergence date of the pandemic. In Figure 3, we provide excerpts from those projections 

through May 15. Our 95% prediction intervals captured reported hospitalizations for Austin 

and Houston, where hospitalizations had seemingly begun to plateau before we generated 

our projections. Beaumont hospitalizations did not plateau until after our projections were 

made, and dipped below the lower 95% prediction bound shortly after the release of our 

report.

Issue with uncertainty quantification

Our stochastic simulations of COVID-19 transmission in Austin produced two types 

of outcomes. Roughly 90% resulted in epidemic trajectories that mirrored the reported 

hospitalizations; the remaining 10% produced outbreaks that faded out before the epidemic 

began growing exponentially. This resulted in wide prediction intervals that do not fully 

convey the bimodal nature of the variation (Figure 3A). The narrower prediction intervals for 

Houston and Beaumont relative to Austin stem from a change in our methodology (Figures 
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3B and 3C). We employed a deterministic version of the model until there were at least ten 

daily incident cases and then switched to a stochastic version to ensure that all simulations 

progress to the point of wide community spread.

Computational resource utilization

We utilized TACC’s Frontera Supercomputer for all computations. Each model run – solving 

the system of equations defining the compartmental model for a number of time steps under 

a single set of parameters – was assigned to one of the 56 cores on a single Frontera 

Intel Xeon Platinum 8230 node. All runs were independent (trivially parallel) and were 

batched as single node jobs. We conducted 6,330 model runs (excluding development and 

debugging runs). A single deterministic fitting run was used to estimate κ for Austin, 

and 29 deterministic fitting runs were used to select the best κ and pandemic emergence 

date combinations for Houston (17 possible dates considered) and Beaumont (12 possible 

dates considered). A total of 6,300 stochastic simulations were performed with estimated 

parameters, of which 4,200 were hybrid deterministic and stochastic runs (2,100 each for 

Houston and Beaumont) and 2,100 were purely stochastic runs (Austin). Table 1 outlines the 

wall clock time per run and the total time needed to complete the results summarized in this 

paper.

DISCUSSION

Our rapid development of models to provide COVID-19 situational awareness in Texas 

highlighted the importance of (1) data availability, (2) modeling infrastructure, (3) reliable 

uncertainty quantification, and (4) computational resources.

Data availability.

The authors of this study include national experts in modeling the transmission dynamics of 

viruses who were tapped by federal, state and local policymakers and public health agencies 

to provide urgent analyses as the COVID-19 pandemic emerged across the US. Throughout 

the pandemic they have served on the Austin-wide COVID-19 leadership team, providing 

model-based projections and policy guidance for city leaders, all area healthcare systems 

and public health officials throughout the pandemic. Through these efforts, the research 

team has had unprecedented access to comprehensive daily COVID-19 hospitalization data 

starting from the first reported case on March 13, 2020.

Data for Houston and Beaumont were provided by the Southeast Texas Regional Advisory 

Council (SETRAC), which helps to coordinate emergency healthcare responses across the 

Texas Gulf Coast, an area that includes Houston and Beaumont and is prone to hurricanes 

and flooding. SETRAC quickly pivoted its data sharing infrastructure to collect and 

disseminate COVID-19 hospitalization data. However, comprehensive COVID-19 hospital 

reporting was not required until April 2020. Thus, earlier data for estimating baseline 

transmission rates in March 2020 were not available for these two regions.

Throughout the pandemic, our unique partnership with healthcare systems in Austin has 

provided critical data for forecasting the pandemic and providing actionable decision 

support [9], [11], [12]. Although our models are scalable to other cities and states, lack 
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of access to granular, standardized, and reliably reported COVID-19 hospitalization data has 

been a major impediment to such efforts.

Modeling infrastructure.

We define modeling infrastructure broadly as a combination of expert knowledge, 

established methods and models (including software), and a data pipeline for model inputs. 

In March 2020, researchers at the University of Texas at Austin partnered with Texas 

Advanced Computing Center to establish the UT COVID-19 Modeling Consortium which 

brought these complementary needs under one roof. The consortium includes experts across 

diverse fields, including infectious disease modeling, optimization, statistics, social sciences 

and software development. Moreover, many of its members have a long track record of 

collaborating on translational research bringing epidemic science and data to the frontline of 

public health.

The rapid pivot from influenza modeling to COVID-19 modeling was made possible by key 

similarities between the two viruses. First, influenza and SARS-CoV-2 are spread by similar 

types of contacts and have similar risk factors [3]. This similarity allowed us to make use 

of the age-specific contact matrices and risk structures that we had previously developed 

for influenza modeling. Second, both viruses have latent periods and can be described by 

similar compartmental model frameworks. Given these similarities, we were able to adapt 

the influenza model for COVID-19 by altering the values of key parameters describing the 

disease progression and transmission dynamics of SARS-CoV-2. New data have since shown 

more differences between these two viruses, and we have been able to incorporate these 

updates quickly through software modifications.

Uncertainty quantification.

Reliable uncertainty quantification is crucial to accurately communicating plausible 

outcomes to the public and to policy makers. We incorporate uncertainty directly with 

our stochastic simulations, where some parameters are drawn from distributions and where 

transitions between disease states have a random component. The result of these stochastic 

simulations is an array of possible epidemic trajectories that capture plausible outcomes for 

a given parameter set. We found that our methodology for initializing epidemic simulations 

produced too many unrealistic simulations and inflated our uncertainty in projecting 

hospitalizations, even after the most unrealistic simulations were removed. We updated 

our simulation initialization methodology to produce more realistic simulations, and we 

believe these results to better capture the realistic uncertainty in our model projections. In 

our full reports, we also explore multiple possible transmission rate reduction scenarios both 

inside and outside of our estimated confidence bounds to highlight the dependence of future 

trajectories on individual behavior and intervention policies [5]–[7].

Computational resources.

We made extensive use of TACC’s Frontera supercomputer for both model development and 

analysis. Once our workflow was optimized, we were able to produce the approximately 

2,000 simulations needed for each report in under one hour by taking advantage of the 

highly parallel processing capabilities of Frontera CPU nodes. This resource coupled with 
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the real-time multifaceted support of TACC staff allowed us to complete the analysis and 

reports within four to nine days of data receipt. Computational resources were never a 

limiting factor.

In the months since the release of these three reports, pandemic policies, human behavior, 

and, consequently, the pandemic itself have evolved. We have updated our models 

continually to reflect our changing understanding of the situation, to make use of new 

data sources, and to support decision making at multiple scales, including the evaluation 

of stay-home orders, physical distancing recommendations, masking requirements, and 

testing priorities. Stemming from these early reports, we now maintain three dashboards that 

provide real-time COVID-19 situational awareness and short-term mortality and healthcare 

projections across Texas and the US [9]. Our collaborative consortium and access to the 

world-class computational resources at TACC has enabled and accelerated our ability to 

provide actionable models for the public and decision-makers.

CONCLUSION

Access to expertise, data, modeling infrastructure, and computational resources has enabled 

rapid and high impact modeling in support of front-line COVID-19 response efforts. 

Academic groups such as the UT COVID-19 Modeling Consortium can rapidly expand 

access to expertise, modeling infrastructure and computational resources by leveraging 

collaborator networks and engaging with stakeholders. However, data access relies on 

external public health and clinical systems. These systems have been heavily stressed 

by the pandemic in ways that have impeded data collection and dissemination. While 

hospitalization data have proven to provide a robust signal for COVID-19 prediction models, 

these data are not consistently reported. This restricts the application of our most reliable 

prediction models to a select set of cities that report hospitalization data; localities without 

access to hospitalization data may have reduced situational awareness. Now in the tenth 

month since the emergence of SARS-CoV-2, reporting of more traditional surveillance data 

including confirmed case and mortality data access are still often inconsistent and missing 

key context for interpretation (e.g. testing policies and test sensitivity and specificity).

In addition to advocating for continued investment in the basic and applied science resources 

that enable the work of UT COVID-19 Modeling Consortium, we also advocate for 

investment in public health systems that facilitate disease surveillance and case reporting. 

These systems include decision making frameworks to guide resource allocation and data 

collection policy during public health crises, infrastructure for data dissemination (e.g. 

data repositories), and trained personnel who can collect, aggregate and disseminate not 

only surveillance data but the metadata that allow stakeholders to contextualize those 

data. Expanding these critical resources while solidifying connections between researchers, 

technologists, clinicians, emergency responders, and public health and governmental 

authorities will be essential to preventing and containing future pandemic threats.
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APPENDIX

Table A1.

Model parameters

Symbol Quantity Value

β 0 transmission rate 0.035

1
γY symptomatic recovery rate Triangular(21.2, 22.6, 24.4)

1
γA asymptomatic recovery rate Triangular(21.2, 22.6, 24.4)

1
γH hospitalized recovery rate 1/14

τ symptomatic proportion 82.1

1
σ exposure rate Triangular(5.6, 7, 8.2)

P proportion of pre-symptomatic transmission 12.6

ωE relative infectiousness, exposed
Y HR

η + 1 − Y HR
γY ωY σP

1 − P

ωA relative infectiousness, asymptomatic 0.47

IFR l low risk infection fatality ratio [0.00092, 0.0022, 0.034, 0.25, 0.64]

IFR h high risk infection fatality ratio [0.0092, 0.022, 0.34, 2.5, 6.4]

YFR l low risk symptomatic fatality ratio [0.0011, 0.0027, 0.041, 0.31, 0.78]

YFR h high risk symptomatic fatality ratio [0.011, 0.027, 0.41, 3.1, 7.8]

YHR l low risk hospitalization ratio [0.028, 0.022, 1.3, 2.9, 3.4]

YHR H high risk hospitalization ratio [0.28, 0.22, 13, 29, 34]

HFR hospitalization fatality ratio [4.0, 12, 3.1, 11, 23]

h high-risk proportion, age specific [8.2825, 14.1121, 16.5298, 32.9912, 47.0568]

η symptom onset to hospitalization rate 0.1695

π symptomatic hospitalization rate
γY * Y HR

η + γY − η Y HR

μ rate from hospitalization to death 1/14

ν hospitalization fatality rate [0.039, 0.12, 0.030, 0.10, 0.23]

ICU proportion hospitalized in ICU [0.15, 0.20, 0.15, 0.20, 0.15]

Vent proportion in ICU needing ventilation 0.67

d ICU duration of ICU stay (days) 10

d v duration of ventilation (days) 10

Values given as five-element vectors are age-stratified with values corresponding to 0–4, 5–17, 18–49, 50–64, 65+ year age 
groups, respectively. Adapted from references [5]–[7], with permission.
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Figure 1. Compartmental model of COVID-19 transmission in a US city.
Each age and risk subgroup is modeled with a separate set of compartments. Upon 

infection, susceptible individuals (S) progress to the exposed (E) compartment and then 

to either symptomatic infectious (IY) or asymptomatic infectious (IA) compartments. All 

asymptomatic cases eventually progress to a recovered class where they remain protected 

from future infection (R); symptomatic cases are either hospitalized (IH) or recover. 

Mortality (D) varies by age group and risk group and is assumed to be preceded by 

hospitalization. Used, with permission, from [5]–[7].
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Figure 2. Estimated reduction in transmission rate during April 2020 stay-home orders (κ) for 
the Austin, Houston and Beaumont areas.
Bars indicate 95% confidence intervals for our estimates of κ.
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Figure 3. Observed and projected COVID-19 hospitalization in the (A) Austin, (B) Houston, and 
(C) Beaumont areas from March 13-May 15, 2020.
Filled points indicate reported hospital census data included in parameter estimation for our 

reports; empty circles indicate hospital census data reported after parameter estimation was 

complete; red lines and shading indicate median predictions and 95% prediction intervals; 

grey shading indicates the period prior to local stay-home orders; solid vertical lines mark 

the dates when reports were released.
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Table 1.

Model run types and wall clock times

Run type N runs single core wall clock time (s)
a

single node wall clock time (s)
b

deterministic fitting 30 189 189

stochastic 2,100 6.31 240

hybrid 4,300 12.6 968

total 6,330 208 1,397

a
Average single core wall clock time on Frontera Intel Xeon Platinum 8280 from 10 benchmark runs

b
Average wall clock time multiplied by the number of 56 core Intel Xeon Platinum 8280 nodes required for the run volume specified
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